PD - 96101A

International Rectifier

IRF7103QPbF

AUTOMOTIVE MOSFET

HEXFET® Power MOSFET

Typical Applications

- Anti-lock Braking Systems (ABS)
- Electronic Fuel Injection
- Power Doors, Windows & Seats

Benefits

- Advanced Process Technology
- Dual N-Channel MOSFET
- Ultra Low On-Resistance
- 175°C Operating Temperature
- Repetitive Avalanche Allowed up to Tjmax
- Automotive [Q101] Qualified
- Lead-Free

V _{DSS}	$R_{DS(on)}$ max (m Ω)	I _D
50V	130@V _{GS} = 10V	3.0A
	200@V _{GS} = 4.5V	1.5A

Description

Specifically designed for Automotive applications, these HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these Automotive qualified HEXFET Power MOSFET's are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.

The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	3.0	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	2.5	Α
I _{DM}	Pulsed Drain Current ①	25	7
P _D @T _A = 25°C	Power Dissipation ③	2.4	W
	Linear Derating Factor	16	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy 4	22	mJ
I _{AR}	Avalanche Current ①	See Fig. 16c, 16d, 19, 20	Α
E _{AR}	Repetitive Avalanche Energy ®		mJ
dv/dt	Peak Diode Recovery dv/dt ©	12	V/ns
TJ	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{ heta JL}$	Junction-to-Drain Lead		42	°C/W
$R_{\theta JA}$	Junction-to-Ambient @⑤		50	

IRF7103QPbF

Electrical Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	50			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.057		V/°C	Reference to 25°C, I _D = 1mA
P	Static Drain-to-Source On-Resistance			130	mΩ	V _{GS} = 10V, I _D = 3.0A ②
R _{DS(on)}				200		V _{GS} = 4.5V, I _D = 1.5A ②
V _{GS(th)}	Gate Threshold Voltage	1.0		3.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9fs	Forward Transconductance	3.4			S	$V_{DS} = 15V, I_D = 3.0A$
1	Drain-to-Source Leakage Current			2.0		$V_{DS} = 40V, V_{GS} = 0V$
I _{DSS}	Diali-to-Source Leakage Guirent			25	μA	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 55^{\circ}C$
lass	Gate-to-Source Forward Leakage			100	nA	$V_{GS} = 20V$
I _{GSS}	Gate-to-Source Reverse Leakage			-100		$V_{GS} = -20V$
Qg	Total Gate Charge		10	15		$I_{D} = 2.0A$
Q _{gs}	Gate-to-Source Charge		1.2		nC	$V_{DS} = 40V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.8			$V_{GS} = 10V$
t _{d(on)}	Turn-On Delay Time		5.1			V _{DD} = 25V ②
t _r	Rise Time		1.7		ns	$I_{D} = 1.0A$
t _{d(off)}	Turn-Off Delay Time		15		115	$R_G = 6.0\Omega$
t _f	Fall Time		2.3			$R_D = 25\Omega$
C _{iss}	Input Capacitance		255			$V_{GS} = 0V$
Coss	Output Capacitance		69		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		29			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions														
Is	Continuous Source Current			0.0		MOSFET symbol														
	(Body Diode)	3.0			A	showing the														
I _{SM}	Pulsed Source Current		10			10	10	10	10	10	12	10	10		10	10	10	10	1 ^	integral reverse
	(Body Diode) ①			12	_	p-n junction diode.														
V _{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.5A$, $V_{GS} = 0V$ ②														
t _{rr}	Reverse Recovery Time		35	53	ns	$T_J = 25^{\circ}C$, $I_F = 1.5A$														
Q _{rr}	Reverse Recovery Charge		45	67	nC	di/dt = 100A/µs ②														

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board

- $\mbox{\ensuremath{\textcircled{\scriptsize 6}}}$ Limited by $\mbox{\ensuremath{\textbf{T}}}_{\mbox{\ensuremath{\textbf{J}max}}}$, see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance.

International

TOR Rectifier

IRF7103QPbF

SO-8 Package Outline

Dimensions are shown in millimeters (inches)

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
Α	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013	.020	0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Е	.1497	.1574	3.80	4.00	
е	.050 B/	ASIC	1.27 B	ASIC	
e 1	.025 B/	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
K	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
У	0°	8°	0°	8°	

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-01 2AA.
- DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

SO-8 Part Marking

EXAMPLE: THIS IS AN IRF7101 (MOSFET)

IRF7103QPbF

International IOR Rectifier

SO-8 Tape and Reel

NOTES:

- CONTROLLING DIMENSION: MILLIMETER.
 ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

- 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR's Web site.

